Here are some even more information on bitcoin mining machine 2016


Your computer is not blasting through the cavernous depths of the internet in search of digital ore that can be fashioned into bitcoin bullion. The size of each batch of coins drops by half roughly every four years, and around , it will be cut to zero, capping the total number of bitcoins in circulation at 21 million. But the analogy ends there. What bitcoin miners actually do could be better described as competitive bookkeeping.

Miners build and maintain a gigantic public ledger containing a record of every bitcoin transaction in history. Every time somebody wants to send bitcoins to somebody else, the transfer has to be validated by miners: If the transfer checks out, miners add it to the ledger. Finally, to protect that ledger from getting hacked, miners seal it behind layers and layers of computational work—too much for a would-be fraudster to possibly complete.

Or rather, some miners are rewarded. Miners are all competing with each other to be first to approve a new batch of transactions and finish the computational work required to seal those transactions in the ledger. With each fresh batch, winner takes all. As the name implies, double spending is when somebody spends money more than once. Traditional currencies avoid it through a combination of hard-to-mimic physical cash and trusted third parties—banks, credit-card providers, and services like PayPal—that process transactions and update account balances accordingly.

But bitcoin is completely digital, and it has no third parties. The idea of an overseeing body runs completely counter to its ethos. The solution is that public ledger with records of all transactions, known as the block chain.

If she indeed has the right to send that money, the transfer gets approved and entered into the ledger. Using a public ledger comes with some problems.

The first is privacy. How can you make every bitcoin exchange completely transparent while keeping all bitcoin users completely anonymous? The second is security. If the ledger is totally public, how do you prevent people from fudging it for their own gain? The ledger only keeps track of bitcoin transfers, not account balances.

In a very real sense, there is no such thing as a bitcoin account. And that keeps users anonymous. Say Alice wants to transfer one bitcoin to Bob. That transaction record is sent to every bitcoin miner—i.

Now, say Bob wants to pay Carol one bitcoin. Carol of course sets up an address and a key. And then Bob essentially takes the bitcoin Alice gave him and uses his address and key from that transfer to sign the bitcoin over to Carol:.

After validating the transfer, each miner will then send a message to all of the other miners, giving her blessing. The ledger tracks the coins, but it does not track people, at least not explicitly. The first thing that bitcoin does to secure the ledger is decentralize it. There is no huge spreadsheet being stored on a server somewhere. There is no master document at all. Instead, the ledger is broken up into blocks: Every block includes a reference to the block that came before it, and you can follow the links backward from the most recent block to the very first block, when bitcoin creator Satoshi Nakamoto conjured the first bitcoins into existence.

Every 10 minutes miners add a new block, growing the chain like an expanding pearl necklace. Generally speaking, every bitcoin miner has a copy of the entire block chain on her computer. If she shuts her computer down and stops mining for a while, when she starts back up, her machine will send a message to other miners requesting the blocks that were created in her absence. No one person or computer has responsibility for these block chain updates; no miner has special status. The updates, like the authentication of new blocks, are provided by the network of bitcoin miners at large.

Bitcoin also relies on cryptography. The computational problem is different for every block in the chain, and it involves a particular kind of algorithm called a hash function.

Your computer is not blasting through the cavernous depths of the internet in search of digital ore that can be fashioned into bitcoin bullion. The size of each batch of coins drops by half roughly every four years, and around , it will be cut to zero, capping the total number of bitcoins in circulation at 21 million.

But the analogy ends there. What bitcoin miners actually do could be better described as competitive bookkeeping. Miners build and maintain a gigantic public ledger containing a record of every bitcoin transaction in history. Every time somebody wants to send bitcoins to somebody else, the transfer has to be validated by miners: If the transfer checks out, miners add it to the ledger.

Finally, to protect that ledger from getting hacked, miners seal it behind layers and layers of computational work—too much for a would-be fraudster to possibly complete.

Or rather, some miners are rewarded. Miners are all competing with each other to be first to approve a new batch of transactions and finish the computational work required to seal those transactions in the ledger. With each fresh batch, winner takes all. As the name implies, double spending is when somebody spends money more than once. Traditional currencies avoid it through a combination of hard-to-mimic physical cash and trusted third parties—banks, credit-card providers, and services like PayPal—that process transactions and update account balances accordingly.

But bitcoin is completely digital, and it has no third parties. The idea of an overseeing body runs completely counter to its ethos. The solution is that public ledger with records of all transactions, known as the block chain. If she indeed has the right to send that money, the transfer gets approved and entered into the ledger. Using a public ledger comes with some problems. The first is privacy. How can you make every bitcoin exchange completely transparent while keeping all bitcoin users completely anonymous?

The second is security. If the ledger is totally public, how do you prevent people from fudging it for their own gain? The ledger only keeps track of bitcoin transfers, not account balances. In a very real sense, there is no such thing as a bitcoin account.

And that keeps users anonymous. Say Alice wants to transfer one bitcoin to Bob. That transaction record is sent to every bitcoin miner—i. Now, say Bob wants to pay Carol one bitcoin. Carol of course sets up an address and a key. And then Bob essentially takes the bitcoin Alice gave him and uses his address and key from that transfer to sign the bitcoin over to Carol:. After validating the transfer, each miner will then send a message to all of the other miners, giving her blessing.

The ledger tracks the coins, but it does not track people, at least not explicitly. The first thing that bitcoin does to secure the ledger is decentralize it. There is no huge spreadsheet being stored on a server somewhere. There is no master document at all. Instead, the ledger is broken up into blocks: Every block includes a reference to the block that came before it, and you can follow the links backward from the most recent block to the very first block, when bitcoin creator Satoshi Nakamoto conjured the first bitcoins into existence.

Every 10 minutes miners add a new block, growing the chain like an expanding pearl necklace. Generally speaking, every bitcoin miner has a copy of the entire block chain on her computer.

If she shuts her computer down and stops mining for a while, when she starts back up, her machine will send a message to other miners requesting the blocks that were created in her absence.

No one person or computer has responsibility for these block chain updates; no miner has special status. The updates, like the authentication of new blocks, are provided by the network of bitcoin miners at large.

Bitcoin also relies on cryptography. The computational problem is different for every block in the chain, and it involves a particular kind of algorithm called a hash function.